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Computing Inverse of a Lower Triangular
Matrix

Let L be a lower triangular matrix:

L =


a0,0 0 . . . 0
a1,0 a1,1 . . . 0

...
...

. . .
...

an−1,0 an−1,1 . . . an−1,n−1

 .
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Computing Inverse of a Lower Triangular
Matrix

Let:

L−1 =


x0,0 0 . . . 0
x1,0 x1,1 . . . 0

...
...

. . .
...

xn−1,0 xn−1,1 . . . xn−1,n−1

 .

Then, for every 0 ≤ i , k ≤ n − 1:

i∑
j=k

xi ,jaj ,k =

{
1 if i = k
0 otherwise
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Computing Inverse of a Lower Triangular
Matrix

This immediately gives an algorithm to compute L−1:

1. Start with i = 0;

2. Set k = i, and solve for x[i][i]; // x[i][i] = 1/ a[i][i]

3. Set k = k-1 until 0, and solve for x[i][k];

4. Set i = i+1, and go to 2.
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Computing Inverse of an Upper Triangular
and Permutation Matrix

This is very similar to computing inverse of a lower triangular matrix.

The inverse is also an upper triangular matrix.

The inverse of a permutation matrix P is PT , the transpose of P!
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Computing Inverse of A

Therefore, the inverse of A = L · U · P is:

A−1 = PT · U−1 · L−1.

The LUP decomposition also gives the determinant of A:

detA = det L · detU · detP.

The determinants of upper and lower triangular matrices are simply
the products of diagonals.

The determinant of permutation matrix equals 1 or −1 and can be
easily calculated.
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Doing LUP Decomposition

Suppose a0,0 = 0 and a0,1 6= 0.

Then

A =


a0,1 a0,0 a0,2 . . . a0,n−1
a1,1 a1,0 a1,2 . . . a1,n−1
a2,1 a2,0 a2,2 . . . a2,n−1

...
...

...
. . .

...
an−1,1 an−1,0 an−1,2 . . . an−1,n−1

 ·


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

The first matrix, say B, has top left element non-zero and the second
matrix, say P̃, is a permutation matrix.
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Doing LUP Decomposition

We now express B as a product of a lower triangular matrix and a
matrix whose first column is all zero except the first entry.

Let

B =


b0,0 b0,1 . . . b0,n−1
b1,0 b1,1 . . . b1,n−1

...
...

. . .
...

bn−1,0 bn−1,1 . . . bn−1,n−1


with b0,0 6= 0.

Let

L̃ =



1 0 0 . . . 0
b1,0
b0,0

1 0 . . . 0
b2,0
b0,0

0 1 . . . 0
...

...
...

. . .
...

bn−1,0

b0,0
0 0 . . . 1


.
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Doing LUP Decomposition

And

C =



b0,0 b0,1 . . . b0,n−1
0 b1,1 − b1,0

b0,0
b0,1 . . . b1,n−1 − b1,0

b0,0
b0,n−1

0 b2,1 − b2,0
b0,0

b0,1 . . . b2,n−1 − b2,0
b0,0

b0,n−1
...

...
. . .

...

0 bn−1,1 − bn−1,0

b0,0
b0,1 . . . bn−1,n−1 − bn−1,0

b0,0
b0,n−1


.

Then
B = L̃ · C .
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Doing LUP Decomposition

Let A′ be the matrix obtained by deleting first row and column of C :

C =


b0,0 b0,1 . . . b0,n−1

0
... A’
0

 .

A′ is invertible ⇔ C is invertible ⇔ B is invertible ⇔ A is invertible.

Now recursively decompose A′ as: A′ = L′ · U ′ · P ′.
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Doing LUP Decomposition

We can write C as:

C =


1 0 . . . 0
0
... L′
0

 ·

b0,0 b0,1 . . . b0,n−1

0
... U ′P ′
0

 .

=


1 0 . . . 0
0
... L′
0

 ·

b0,0 b′0,1 . . . b′0,n−1

0
... U ′
0

 ·


1 0 . . . 0
0
... P ′
0

 ,

where [b0,1 · · · b0,n−1] = [b′0,1 · · · b′0,n−1] · P ′.
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Doing LUP Decomposition

Therefore, C gets decomposed as:

C = L̂ · Û · P̂,

where L̂ is lower triangular matrix, Û is an upper triangular matrix,
and P̂ is a permutation matrix.

We already have:
A = L̃ · C · P̃.

Hence:

A = L̃ · L̂ · Û · P̂ · P̃.
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Doing LUP Decomposition

It is easy to see that product of two lower triangular matrices is also
lower triangular. Similarly for upper triangular and permutation
matrices.

Therefore:
A = L · U · P,

where L = L̃ · L̂ is a lower triangular matrix, U = Û is an upper
triangular matrix, P = P̂ · P̃ is a permutation matrix.

In addition, the diagonal entries in L are all 1’s: follows from the
above construction!
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Handling Large Code

The entire code is nearly 400 lines long!

It becomes unwieldy to work with such a large code in a single file.

Therefore, C compiler allows one to split the code in multiple files.

Functions of one kind can be grouped in one file.

All the files can then be simultaneously compiled.
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Handling Large Code

Another useful tool is the header file: we can create a header file, say
matrix.h containing:

I All the constants defined via #define.
I All the declarations of the functions in the program.

Then we can simply write #include "matrix.h" at the beginning of
each file, and do not need to have function declarations in the top of
every file.
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